Diophantine approximation with prime restriction in function fields

نویسندگان

چکیده

In the thirties of last century, I. M. Vinogradov established uniform distribution modulo 1 sequence pα when α is a fixed irrational real number and p runs over primes. particular, he showed that inequality ||pα||≤p−1/5+ε has infinitely prime solutions p, where ||.|| denotes distance to nearest integer. This result subsequently been improved by many authors. The current record due Matomäki (2009) who infinitude ||pα||≤p−1/3+ε. exponent 1/3 considered limit technology. We prove function field analogues this for fields k=Fq(T) imaginary quadratic extensions K k. Essential in our method Dirichlet approximation theorem which general form appendix authored Arijit Ganguly.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diophantine Inequalities in Function Fields

This paper develops the Bentkus-Götze-Freeman variant of the DavenportHeilbronn method for function fields in order to count Fq[t]-solutions to diagonal Diophantine inequalities in Fq((1/t)).

متن کامل

Diophantine Approximation by Cubes of Primes and an Almost Prime

Let λ1, . . . , λs be non-zero with λ1/λ2 irrational and let S be the set of values attained by the form λ1x 3 1 + · · ·+ λsxs when x1 has at most 6 prime divisors and the remaining variables are prime. In the case s = 4, we establish that most real numbers are “close” to an element of S. We then prove that if s = 8, S is dense on the real line.

متن کامل

Diophantine Equations and Congruences over Function Fields

We generalize the methods of Pierce of counting solutions to the congruence X ≡ Y b mod D [8] and the square sieve method of counting squares in the sequence f(X) + g(Y ) [7] to the function field setting.

متن کامل

Diophantine Subsets of Function Fields of Curves

Fi(r, y1, . . . , yn) = 0 ∀i has a solution (y1, . . . , yn) ∈ R iff r ∈ D. Equivalently, if there is a (possibly reducible) algebraic variety XR over R and a morphism π : XR → A 1 R such that D = π(XR(R)). In this situation we call dioph(XR, π) := π(XR(R)) ⊂ R the diophantine set corresponding to XR and π. A characterization of diophantine subsets of Z was completed in connection with Hilbert’...

متن کامل

Statistics of Prime Divisors in Function Fields

ROBERT C. RHOADES Abstra t. We show that the prime divisors of a random polynomial in Fq[t] are typi ally Poisson Distributed . This result is analogous to the result in Z of Granville [1℄. Along the way, we use a sieve developed by Granville and Soundararajan [2℄ to give a simple proof of the Erdös-Ka theorem in the fun tion eld setting. This approa h gives stronger results about the moments o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2022

ISSN: ['0022-314X', '1096-1658']

DOI: https://doi.org/10.1016/j.jnt.2022.02.012