Diophantine approximation with prime restriction in function fields
نویسندگان
چکیده
In the thirties of last century, I. M. Vinogradov established uniform distribution modulo 1 sequence pα when α is a fixed irrational real number and p runs over primes. particular, he showed that inequality ||pα||≤p−1/5+ε has infinitely prime solutions p, where ||.|| denotes distance to nearest integer. This result subsequently been improved by many authors. The current record due Matomäki (2009) who infinitude ||pα||≤p−1/3+ε. exponent 1/3 considered limit technology. We prove function field analogues this for fields k=Fq(T) imaginary quadratic extensions K k. Essential in our method Dirichlet approximation theorem which general form appendix authored Arijit Ganguly.
منابع مشابه
Diophantine Inequalities in Function Fields
This paper develops the Bentkus-Götze-Freeman variant of the DavenportHeilbronn method for function fields in order to count Fq[t]-solutions to diagonal Diophantine inequalities in Fq((1/t)).
متن کاملDiophantine Approximation by Cubes of Primes and an Almost Prime
Let λ1, . . . , λs be non-zero with λ1/λ2 irrational and let S be the set of values attained by the form λ1x 3 1 + · · ·+ λsxs when x1 has at most 6 prime divisors and the remaining variables are prime. In the case s = 4, we establish that most real numbers are “close” to an element of S. We then prove that if s = 8, S is dense on the real line.
متن کاملDiophantine Equations and Congruences over Function Fields
We generalize the methods of Pierce of counting solutions to the congruence X ≡ Y b mod D [8] and the square sieve method of counting squares in the sequence f(X) + g(Y ) [7] to the function field setting.
متن کاملDiophantine Subsets of Function Fields of Curves
Fi(r, y1, . . . , yn) = 0 ∀i has a solution (y1, . . . , yn) ∈ R iff r ∈ D. Equivalently, if there is a (possibly reducible) algebraic variety XR over R and a morphism π : XR → A 1 R such that D = π(XR(R)). In this situation we call dioph(XR, π) := π(XR(R)) ⊂ R the diophantine set corresponding to XR and π. A characterization of diophantine subsets of Z was completed in connection with Hilbert’...
متن کاملStatistics of Prime Divisors in Function Fields
ROBERT C. RHOADES Abstra t. We show that the prime divisors of a random polynomial in Fq[t] are typi ally Poisson Distributed . This result is analogous to the result in Z of Granville [1℄. Along the way, we use a sieve developed by Granville and Soundararajan [2℄ to give a simple proof of the Erdös-Ka theorem in the fun tion eld setting. This approa h gives stronger results about the moments o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2022
ISSN: ['0022-314X', '1096-1658']
DOI: https://doi.org/10.1016/j.jnt.2022.02.012